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The problem of optfmizing systems wit& distributed parameters has been 
investigated from various points of view in papers by a number of 
authors, for instance 11-41. In cl] Bellman’s dynamic programming method 
was applied to the problem: papers [2-41 contain, together with a 
general statement of the problem, an analog of the maximum principle 
proposed by L.S, Pontriagin, and moreover, in the latter set of papers 
(except f23) from the very begi~u~ng the problem is formulated in terms 
of integral relations*. 

The paper here offered has the purpose of outlining necessary opti- 
mality canditions by the methods of classical cs~lculns of variations. 
The optimal problem is formulated tfs a Mayer-Bolza problem for multiple 
integrals with connections given both by partial differential. equations 
and also by ordinary differential equations. The necessary stationary 
value conditions and the necessary Weierstrass condition are obtained; 
from this latter condition an analog of the maximum principle is derived. 
For the sake of simplicity the presentation is carried out for two in- 
dependent variables. 

- 

* After the paper was submitted to the editor, the author became 
acquainted with the just-published paper of A.I, Egorov (P21fiM Vol. 27, 
NG.~, 19ti3) containing optimal~ty conditions for processes described 
by systems of quasitinear hyperbolic equations, (h’ote in proof). 



The Mayer-Rolza problem 

For optimal problems described by 

analogous constructions were carried 

E5.61, Berkovitz t71 and Kalman [81. 

for multiple integrals 1285 

ordinary differential equations, 

out in the papers of Troitskii 

The optimization of systems with distributed parameters is investi- 

gated below within the framework of the study of solutions of correspond 

ing canonic systems. For the completion of a logical scheme peculiar to 

the variational approach, it is necessary to study another aspect of the 

problem, namely, a series of questions connected with Bellman’s princi- 

ple of optimality and with the Hamilton-Jacobi equation. Such investiga- 

tions for optimal problems with ordinary differential equations are con- 

tained in the paper by Dreyfus [91 and also in the papers of Berkovitz 

[?I and Kalman [St already mentioned. 

1. Statement of the problem. A doubly-connected region S inthe 
xy-plane with piecewise-smooth boundary curves 2, and 1, is given 

(Figure). In the closed region S is given a system of first order 

partial differential equations 

This system consists of the components of the vector function z = 
1 

(z , ***, z"), and also of the vector functions 5 = (<I, . . . . 5") and 

u = (U%, .*., up). The functions z together with 5 give a characteristic 

system, while the functions u play the role of "extensional controls", 

The totality of functions z and ?j will be called the state of the system 

Any system of partial differential equations can be reduced to the 

form (1.1) IlO, p.3241 (with an increase, if necessary, in the number 

of dependent variables). For example, the Helmholtz equation 

z=' + zyyl + uzi = 0 

is equivalent to the system 

2,' = 2% 

ll3 

% 1 ZZZ zz, 2," = - r;z - 7221, zy2 = 51, 2,” = 1 5 , ZII” = g3 

- 2,s = 0, &/3 + (uzyv + L’ = 0, &l - gx3 = 0 

It is not difficult to see that the role of functions 5 consists, 

essentially, in giving the total order of the system. 

With equation (1.1) are associated r<p constraints imposed on the 

extensional controls; of these the first rl have the form of finite 

equalities 

Gil (u; 5, y) = 0 (k=1,...,rr) (1.2) 
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and the remaining r - rl are given by finite inequalities 

G,c (u; 5, y) > 0 (k=r1-j-l, . . ..r<JJ) (1.3) 

Let us suppose that the values of the first 

nl \< n functions 2’ are given on the curve I1 

which is assumed to be known. Thus 

zi jr1 = zri @) (i = 3, . . . , nr) (W 

The number n1 is determined by the condi- 

tions of each actual problem. 

‘Ihe closed curve 1, is not taken as known a priori; it is assumed 

only that on this curve are observed nZ <n first-order differential 

equations of the form* 

Ti, (z, v; t) = 0 (i* = i,, . , in,) (1.5) 

In these equations occur, among others, the functions 

V = rx (t) (x = 1, . * . 3%) 

called the boundary controls. The values of z ik when t = 0 are assumed 

to be known. Between the functions vK are established, similar to (1.2) 

and (1.3), relations expressed by finite equalities 

g, (r; t) = 0 (k== 1, , . , pl) (1.6) 

and inequalities 

gk (v; t) > 0 6 - PI + 1, . . . , P en) (1.7) 

The total number of these relations equals p QT. 

‘Ihe extensional controls uk will be taken to be piecewise continuous 

functions of coordinates x and y; the possible discontinuities of these 

functions are arranged, by assumption, along some isolated closed smooth 

lines IO. 

The superscripts plus and minus associate, respectively, the regions 

lying to the left and to the right of the lines of discontinuity. “Left” 

and “right” sides are determined in the usual fashion by the positive 

* The number n2, similarly to nl, is determined by the actual given 

problem. 
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traverse along 1, around the region enclosed by this curve. 

in the Figure the region on the left of the discontinuity 

which borders on I, from within. 

The functions z' will be taken to be continuous when passing through 

z 
0' 

In what follows, for simplicity it is assumed that in region S there 

is one discontinuity of the extensional 

closed curve 1, which can be reduced to 

continuous deformation (Figure). 

controls, situated on the simple 

any of the boundary curves by a 

In like manner the boundary controls uK may undergo discontinuities 

of the first order on curve 1,; for the functions uK the superscripts 

plus and minus correspond to limit values of the functions before and 

after the discontinuity. 

For simplicity we shall consider that we have only one such point of 

discontinuity t*; the functions zi, considered on Z,, are assumed* to 

be continuous when passing through the point t*. Generally speaking, the 

direction of the normal to curve '2, is discontinuous at t since only 

under this condition do the derivatives dzLk/dt lose contfnuity at t 
lhe functions z', (j and uk are assumed to be single-valued in the 

** 

closed region S. 

'Ihe Mayer-Bolza problem can now be formulated in the following form. 

We define the functions zi, <j and the controls r.zk, vK such that when 

all the conditions enumerated above are valid, the sum 
(1.8) 

J = 0” (2, 5, u; 5, y) dxdy + f fl (2, 0 dt + $ f2 (2, v, t) dt 
x61 .cP 

takes the smallest possible value. 

2. Necessary conditions for a stationary value of func- 
tional (1.8). First of all, in the usual manner we pass to the open 

region of variation of the extensional and boundary controls, introduc- 

ing (real) auxiliary controls u* =: (u 
Fl+l 
~ ur) and ZJ~"', . . . . vi> I ***, * 

with the aid of the equalities 

Gk* = Gk (u; x, y) - (u$)~ = 0 (k=r13_1,...,r) (2.1) 

&* = & (v; t) - (?,,k)” = 0 @ = fh+ 1, * * . t PI t2.21 

which replace, respectively, inequalities (1.3) and (1.7). 

* We have in mind the limit values of these functions on z2. 
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We begin to compose the necessary conditions for a stationary value 

by introducing the Lagrange multipliers 

Ei' (X9 Y), Il? (G Y)7 'pi+ Cxt ?/) (i = 1, . ’  ., n) 
(2.3) 

T‘k& (2, Y) (k = 1, . . . , Fl), r-k** (x7 y) (k=r1$-1, . ..) r) 

h, tt) (&= i,, i,, . . * ) in,) 

l%r @) (k=&...,pl) rk* tt> tk=Pl+l, *..,P) 

Using these multipliers we construct the functional (the products of 

vector functions are understood to be scalars) 

II = J + \\ (E’s+ -I- q'H+ + q+@* +I'+G+ + P*G"*) dxdy + 
S’ 

+ \\ (E-E- + q-H- + rp-CD- + r-G- + I'*-G*-) dx dy+ 
s- 

+ Jj (e@ + w + r*g*1 dt 
& 

(2.4) 

The functional ll always equals J; therefore, in particular, TI and .J 

are simultaneously stationary. 

In what follows we transform the terms in (2.4) containing the 

factors cp by integration by parts; we obtain* 

\\ q+,+ dx dy = \\ cp+ ($$ - g) dx dy = - (c$ + $) cp+ (X+dx+Y*dy)- 
s+ s+ co 2% 

- \\ (X+ $ - Y+ g) dx dy = - [rp+z*]~~ - [cp+z+lx, + (f + $)z+q++dt- 
g+ co El 

x+ a9+ -- 
8Y 

12.51 

Let us denote by L, E,, 1, and E, the Lagrange functions 

L=F+ TjE + qH + Yrp,--Xq+,+rG +r*G* 

t, = fI + (P+@+, $0 = (ptz, 1% = fz + O@ + y!5? + ~“g”+%-z- 

'Ihe first variation of functional ll consists of integrals over the 

regions 9 and S, of integrals on the curves I,, IO and Z,, and of 

* BY [f]~ we denote the increase in function f for a Single traverse 

around the closed curve 1. 
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terms outside the integrals. 

That part of the total expression for the first variation which is 

represented by double integrals, has the form* 

+ ii --$& 6uk- dx dy + ~~ -$ ~I.z,~+ dx dy + ~~ 5 ~Yu,~- dx dg (2.6) 
it+ B- 

For obvious reasons the Lagrange multipliers do not vary. 

Let us consider the line integral 

&f dt 

where f is a limit value 
continuous together with 
adjoining the curve. For 

follow the rule 

on the smooth curve 2 of a function which is 
its first derivative and is given in the region 

the variation of such integrals we should 

P 
d$ddt =$8f dt + $(f+$$%zdt (2.7) 

where p is the radius of curvature of the curve and 6n is the variation 

of the external normal (the normal in the direction outside the region, 

corresponding to the direction of traverse of the curve in accordance 

with the above-mentioned rule). 

The integral on curve I1 in the expression for the first variation 

has the form 

The integral on curve IO of discontinuity of the extensional con- 
trols is written in the form 

${[(h$f - %-$+$)~z”]+ + (L+++~)+th}dt (2.9) 
x0 

l Here and in what follows we accept the usual summation coudftion. 
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To make up the integral on curve Zz it is necessary to take into con- 

sideration the presence of the discontinuity of the boundary controls. 

In fact, this is taken into account by introducing the corner point t* 
on curve 1,. We obtain 

(2.10) 

0n the line of discontinuity X0 the conditions 

af=Af+in (2.11) 

are valid, where A is the symbol for total variation of the function. 

By hypothesis, the functions zi are continuous on IO, and the same 

is true of their total variations. The functions 51 and uk, generally 

speaking, are discontinuous on I,,. Therefore integral (2.9) can be re- 

writfen in the following form: 

At the point of discontinuity of the 

equality 6~' = AZ' - (grad zi x 6~); by 

the radius vector at the corner point. 

boundary controls on 1, the 

6r we denote the variation of 

If we take into account the continuity of the total variations of 

functions zi at the point t*, then the term outside the integral in 

(2.1) is transformed to the form 

[Oik (t.Jl+-AziA (t,) - [Oil, (t*) grad zik]+--6r (2.13) 

The first variation of functional II is obtained by summing expres- 

sions (2.6), (2.8), (2.10) and (2.12), and also the corresponding terms 

outside the integrals with due regard to (2.13). 

Usual arguments lead to the following stationary value conditions. 

In the regions Lq 
(2.14) 

‘Ei* -&-+!g_ 
8L’ 

-T-=0 (i=i,...,n), 
aL* 

az’* 
-=o (j’l,_..,Y) 
ap 
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l3Lk aL* 
- =o 
auk+ 

@=I, . . ..p). 
- = - 2rk**U*k* 
au,kf - 

=o (k=rl+l,...,r) 

Along boundary Z1 

$ + Et+% - Tli+g = 0, [qgz:,=O (i =n1+ 1, . . . . n) 

Along boundary 1, 

deik ala -~- 

dt azz- 
&- 2 + qi- g = f-j, [~;I& = 0 (i # ik) 

+o (x=1,...,n) 

(2.15) 

(2.16) 

(i = 1, . ..) n) 

a12 - = -2rx*v*x= 0 
av,x - 

(x= p1+1,..., P), IF++++0 

At the point t* of discontinuity of the boundary controls 

‘ik- (td-%k- (t*) = eii(t*)-_cPik+(t*) eik- (t*) grad Zik- (t*) = 

= Oik+(t*) grad zik+(t,) (ik = i,, . . ., in,) (2.17) 

Along the curve 1, of discontinuity of the extensional controls 

(E* 3 - qig + -$)’ = 0 @=I, . . .) n) [cpi]? = 0 

[L+~+~_~~i~-~i%+~)~]I=o (2.18) 

IJsing the Hadamard-Hugoniot theorem and the first of equalities 

(2.18), the last condition is transformed to the form 

(L + $ + $)_+ - Ei+ (zki)_’ - ‘Tji (Zyi)_’ - $ ( $) + = 0 (2.19) 

It is clear that the original equations and boundary condition of 

Section 1 should be supplemented by the equations and boundary condi- 

tions (2.14) to (2.18). 

3. The Hamilton form of the obtained relations. Starting 

from the Lagrange function 

L=F+@+qH+Yq,-X~J,+I’G+I’“G* (3.1) 

we convince ourselves that the "impulses" %/azXi and Z/&z 
Y 
i coincide, 
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respectively, with the Lagrange multipliers ci and qi. 

We define the Hamilton function 

H = [z2Lz,i + zyiLzyi - Ll, iEx, z iIy. = EX + ?Y - 

- F - Yq, + &, -z r”c ” r*G* (3.21 

The following equalities are obvious: 

H, = -L,, H, = -L,, H,i= - Lziy H;i= - L,j 

H,,k = - &,k , HUtk= --L Hki = Xi, H,i = Yi 
(3.3) 

% k, 

Using these relations we replace the first pair of equalities of 

(1.1) and the equalities of (2.14) by the following formulas: 

These equations have the form of the canonic equations of Volterra 

[llI. The third group of equations in (1.1) play as before the role of 

integrability conditions. 

'lhe last three equations of (2.14) are written, respectively, in the 

form 

aH -=o (i=i, . . . . Y), 
w 

$=o (k=i ,..., P) 

aH * k- ==:2r, U* -0 (k=rl+i,..., F) (3.5) 

Condition (2.19) is rewritten as 

(H)_+ = zxi- (Ed-+ + zy i-(Tli)_+ + (+ + $)_+- s(g)_+ (3.6) 

Likewise, starting from the expression for the Lagrange function 

1, = f2 + 00 + Yg + 7*g*+ 'Pt-s- (3.7) 

we discover that the "impulses" al/%, 
ik coincide with the Lagrange 

multipliers 0. tb; let us define the Hamilton function 

h = [zt~2z; - z21Ztik=T. = BikTik - fz - 7g - 7*g*- cPt_’ (3.8) 
‘k 

As before we pass to the relations 

h,= - latr hzi F - lzzi h,,, = - 12vxT hvxx = - lzv xv heik = Ti, (3.9) * 
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Keeping this in mind, we replace equations (1.5), and also those of 

the first equality of (2.16) in which i = ik, by a system of relations 

of the form 

'Ihe remaining equations of (2.16), with the exception of the last, 

are rewritten in the form 

ah 
- = 0 @=1, ’ .., n), 
&lx 

ah 
-j-j-y = 2T*7J*x = 0 @= Pl fL * * ** PI (3.11) 

c 

4. The necessary conditions of Weierstrass and Clebsch. 
These conditions may be derived by a single method for the classic 
Mayer-Bolza problem and for the problem containing controls. 

Let us introduce the Weierstrass functions 

E(‘) = L (2, zx, z,, z, u, u,; E, q, qk, q$J, r, I-*) - 

- L (-% zw 5, L u, u*; E, rl, rpx, q$, r, l-7 - 

-(Z,‘- z”J-$- (Z,“- z&$- 
r It 

(4.1) 

.w = 4 (2, zt, v, v*; 8, rpt, 7, 7*) - 

- t, (2, 2it, V, v*; e, cpt, 7, r*) - (z,ik - ztik) at, 
azp 

(4.2) 

In these formulas z, 5, u and v correspond to the extremal and its 

boundary, and Zz Z, U and V are any admissible functions satisfying the 
condition of Section 1. 

The necessary condition of Weierstrass for a strong relative minimum 

is given by the relations 

E(l) > 0, E(2) > 0 (4-3) 

the proof of which is given in the Appendix. 

Conditions (4.3) may be rewritten in the form of inequalities for 

the Hamilton functions 

The auxiliary controls do not actually enter into these inequalities, 



since the terms containing them in the Hamilton functions equal zero, 

The totality of formulas (3.5) and (4.41, and also (3.11) and (4.51, 

form the analog of L,S. Pontriagin's maximum principle for our problem. 

The necessary conditions of Clebsch for a weak minimum are derived 

in the usual manner from the Yeierstrass condition. Namely, let &zX, 

Fzy, X, 6u and SV be small variations and let 

2, = 2, + s%C, & = 4 + Qj, z=C+Q VW 

I!7 = z.5 + aa, v==v+&J 

We arrive at the following expressions for the Veierstrass functions 

(terms of order greater than two in smallness of variation are 

neglected): 

By substituting these expressions into inequalities (4.3) we arrive 

at the necessary conditions of Clebsch. 

'Ihe variations of the functions, entering into the Clebsch condi- 

tions, are related by a system of equations obtained by varying the 

equations of Section I in accordance with the derivatives of zi, the 

functions <j and the controls U' and #, namely 

(4.11) 

(4. i2) 

We assume that the auxiliary controls have already been introduced; 

the asterisks in their notation are discarded. 

5. Appendir. Necessary cundition of Weierstrass. Fe shall 

assume that the constraints imposed on the extensional and boundary 
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controls have already been written in the form of equalities of type 

(1.2) and (1.6). 

‘lhe following hypothesis is made as the basis of our reasoning: the 

extremal surface S with boundary curves Zl and I2 can be enclosed in an 

(nl + n2)-parameter family of surfaces S(b) along which are defined the 
functions 

zi (b; 2, y) (i = 1, * * . . n) 5’ (b; x, y> (j = 1,. . . , Y) 

Uk(b, x, y) (k=i,...A (5.1) 

The stated surfaces have boundary curves Zl and I,(b), and moreover, 
along the latter are defined the functions 

x (b; t), y (b; t), 2: (b; t), s2j (b; t), uzk (b; t) 9 zJx (b; t) (5.2) 

Both families have been defined such that equations (l.l), (1.2), 
(1.5) and (1.6) are satisfied, and such that when b,=b,=... =b, +n = 0, 

we arrive at functions relating to the original extremal and its koAd- 

aries I1 and Z2. 

In the region S of the xy-plane let us select the closed smooth curve 

1’ bounding a region S’ and not intersecting curve 1, (see Sections 1 

and 2); simultaneously, let us select on curve 1, the point t’ different 

from the corner point*. 

Let us enclose curve 1.’ from the outside by a nearby curve Z,‘, 

located on the same extremal and not intersecting the first curve; the 

region between these curves will be denoted by Se ’ - S’. 

The equations of curves Z’ and Ze’ have the form 

(2 ‘) z = 2’ (t), Y = Y’ (0 

(Xt?‘) J: = 5’ (t) + e cos (nx), Y = Y' (t) + e ~0s by) 

Here e > 0 is a parameter and cos(nx) and cos(ny) are direction 

cosines of the external normal to curve 1’. When e = 0, curves 1’ and 

‘e ’ coincide and the region Se’ - S’ vanishes. 

The part of region S lying outside the curve Ze’ is denoted by 

s, - se *. 

* Here and in what follows we use one and the same notation for the 
regions (curves) and for their projections on the xy-plane. 
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Let us construct three families of surfaces 

zi@; XI y), 5j (b; 5, y), uk@; $9 y) (5, y) ES" 

9 (b; 59 $9 zj (b; 2, Y), Uk (b; x, y) (2, y) ES’, - S’ (5.3) 

+(b; e, 3, y), 5’ (b, e; 2, y), Uk (b; 2, y) (z, 9) ESb - s’e 

of which the first and the third satisfy equations (1.1) and (l.Z), and 

the second the same equations with tZ replaced by X', etc. 

Likewise, let us set off on the boundary curve 1, (O<t \(t,) a 

line segment E from the point t‘ in the positive direction and let us 

construct two families of curves complementing each other up to the 

closed boundary curve I,(b, E). Along these families let us define 

Zz(b, e; t), Z?(b, e; t), Uzk (b; t), 
(5.4) 

V” (b; t) (t’ f t < t’ + E) 

22 (b, e, 8; t), %,j (b, e, E; t), uzk (b; t), vx (b; t) 
( 
o<t<t’ 
t’+e<t<ts 1 

Functions (5.4) satisfy boundary conditions (1.5) and (particularly) 

the initial conditions when t = 0 (see Section I). 

Let us introduce the following notations: 

The families of functions constructed above obey 

families (5.3) 

the conditions: 

Zi (b; z, y)/ x:’ = zi (b;s,g)I z, 

Zi (6 z, y) j c,’ = zi (h e; z, y> I 2; 

grad(Zi - zi) 1 I;t = n dezi 1 x:’ 

families (5.4) 

Zzi(b, e; t') = zzi (b, e, E; 1’) 

Z,i (b, e; t’ + E) = zzi (b, e, 8; t’ + E) 

z,,i (C) = z,*i (t’) + 6,%j (t’) 

(5.Q 

(5.7) 
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Let us consider the functicsnal. 

differing from the original functional J in terms equal to ziero. 

Taking the stationary value conditions into account, we find 

We take ridvantage of boundary conditions (1.4) and of the given 
values of z=qaj on z 2a %ese conditions establish, firstly, rxr finite 
equations connecting the parameters.b,, and secondly, n2 finite equa- 
tions connecting the parameters b,, e and E. We assume that from these 
equations all the b, can be determined as functions of e and E. Now, by 
making up the total differential of functional I[ when e = E = 0 
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and the total differentials (equal to zero) of the left-hand sides of 

the above-mentioned finite equalities, we discover with the aid of (5.61, 
(5.7), (5.9) to (5.11) and (4.1) to (4.2), that 

(5.12) 

In order that functional TI, and together with it also J, reaches a 

minims, it is necessary to satisfy the inequality 

The admissible surfaces (boundary curves) always correspond to posi- 

tive values of parameter e or E, or, what is the same, of the differ- 

entials tie and &. '.&is circumstance, together with (5.X!), is equivalent 

to the requirements 

iF E(l)& > 0, E(2) (t’)> 0 
xc’ 

If we consider the arbitrariness of the choice of curve Z' on the 

extremal and of the point t* on its boundary, then the obtained inequal- 

ities reduce to the necessary condition of Weierstrass. 

Although the proof was carried out for those parts of the extremal 

and its boundary which do not contain the corner lines (points), it re- 

mains in force also for these lines {points), thanks to continuity argu- 

ments. 
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